Intention Prediction and Mixed Strategy Nash Equilibrium-Based Decision-Making Framework for Auton

论文标题:Intention Prediction and Mixed Strategy Nash Equilibrium-Based Decision-Making Framework for Autonomous Driving in Uncontrolled Intersection

作者单位:Transportation Science and Engineering, Beihang University

发表期刊:IEEE Transactions on Vehicular Technology, 2022


摘要:Decision-making in uncontrolled intersection is one of the main challenges in urban autonomous driving. This paper proposed a new decision-making framework in uncontrolled intersection based on the intention prediction method and Mixed Strategy Nash Equilibrium theory. The framework is a three-stage method: target vehicle motion prediction, driving mode decision, and motion planning. The driving intention (left turn, right turn, or go straight) of the target vehicle at the intersection can be predicted using the combination algorithm of GMM-HMM and SVM. According to the driving intention and road structure, the trajectory fitting module would use the Bezier curve to fit the predicted trajectory of a target vehicle. Furthermore, combined with trajectories of the ego vehicle, the S-T diagram is used to judge whether there is a spatio-temporal conflict point of the target vehicle and ego vehicle. If there is a conflict point of the target vehicle and ego vehicle, the driving mode (‘yield’ or ‘cross’) of the ego vehicle is selected by using the Mixed Strategy Nash Equilibrium theory. This method can not only avoid premature or unnecessary deceleration due to conservation but also avoid a collision or violent deceleration due to greed. According to thedriving mode, the planning module uses the model predictive control algorithm to determine the optimal acceleration strategy. Have been verified by the vehicle test, it indicates that the proposed decision-making framework can make ego vehicles pass through the intersection safely and comfortably.


关键词:Autonomous driving, Mixed Strategy Nash Equilibrium theory, model predictive control and intention prediction.

PanoCar试用(学校申请)

  • 姓名*

  • 手机号*

  • 微信号*

  • 邮箱

  • 所在学校*

  • 所在学院*

  • 导师姓名*

  • 导师电话

  • 导师邮箱

  • 试用PanoCar目的*

    • 产品选型
    • 项目招标
    • 毕业设计
    • 学术研究
    • 参加比赛
    • 学习了解
    • 其他
  • 您认为软件使用过程中哪些方面比较重要*

    • 技术支持
    • 产品功能
    • 性价比
    • 国产化替代
    • 需求定制能力
    • 仿真精度
    • 模型计算效率
    • 模型计算稳定性
    • 模型参数配置易用性
    • 模型参数库丰富程度
    • 其他
  • 您关注PanoCar哪些模块或功能*

    • 模块:车辆底盘模型
    • 模块:动力传动系统模型
    • 模块:空气动力学模型
    • 模块:转向系统模型
    • 模块:悬架系统模型
    • 模块:制动系统模型
    • 模块:轮胎模型
    • 模块:3D道路模型
    • 模块:驾驶员模型
    • 模块:驾驶操纵模型
    • 模块:I/O接口
    • 功能:Matlab/Simulink联合仿真
    • 功能:PanoCar实时平台应用
    • 功能:PanoCar本地仿真测试
    • 功能:数据后处理功能
    • 功能:动画引擎
  • 您是通过哪种途径了解到PanoCar的*

    • 官网
    • 微信公众号
    • 论文专著
    • 学术会议
    • 知乎B站等其他新媒体平台
    • 行业网站
    • 搜索引擎
    • 同行推荐
    • 他人介绍
    • 其他
  • 验证码

PanoCar试用(企业申请)

  • 姓名*

  • 手机号*

  • 所在单位*

  • 所在部门*

  • 微信号*

  • 邮箱

  • 您试用PanoCar软件的目的*

    • 产品选型
    • 项目招标
    • 学习了解
    • 其他
  • 您认为软件使用过程中哪些方面比较重要*

    • 技术支持
    • 产品功能
    • 性价比
    • 国产化替代
    • 需求定制能力
    • 仿真精度
    • 模型计算效率
    • 模型计算稳定性
    • 模型参数配置易用性
    • 模型参数库丰富程度
    • 其他
  • 您关注PanoCar哪些模块或功能*

    • 模块:车辆底盘模型
    • 模块:动力传动系统模型
    • 模块:空气动力学模型
    • 模块:转向系统模型
    • 模块:悬架系统模型
    • 模块:制动系统模型
    • 模块:轮胎模型
    • 模块:3D道路模型
    • 模块:驾驶员模型
    • 模块:驾驶操纵模型
    • 模块:I/O接口
    • 功能:Matlab/Simulink联合仿真
    • 功能:PanoCar实时平台应用
    • 功能:PanoCar本地仿真测试
    • 功能:数据后处理功能
    • 功能:动画引擎
  • 您是通过哪种途径了解到PanoCar的*

    • 官网
    • 微信公众号
    • 论文专著
    • 学术会议
    • 知乎B站等其他新媒体平台
    • 行业网站
    • 搜索引擎
    • 同行推荐
    • 他人介绍
    • 其他
  • 验证码