A Generation Method of Synthetic Images with Reduced Domain Gap for Car Demain Gap for Car Detection

标题:A Generation Method of Synthetic Images withReduced Domain Gap for Car Detection


作者单位:School of Transportation Science & EngineeringBeihang University;PanoSim Technology Company


发表期刊

Proceedings of the 5th CAA International Conference on Vehicular Control, 2021



摘要:Deep learning has become the main way of the object detection task for autonomous vehicles. Meanwhile, this method typically requires vast amounts of training data to reach their full potential. However, collecting the data from real world and labeling manually is an expensive, time-consuming and error-prone process. Synthetic image has the potential to replace real image for training neural networks, because image creation and labeling annotations are free in this way. For the network trained by synthetic images, the reality gap between real and synthetic images is the main obstacle to use it in the real world. And most previous works are only devoted to generate synthetic images with a good performance on model training, but lack of analysis of the domain gap that affects the performance. This work designs a method of generating the real and synthetic images to analyze and reduce the reality gap between synthetic and real images for car detection. Firstly, this work put one single car with no-background in a random background image to generate real single car and synthetic single car images. In order to further reduce the domain gap in content level, this method keeps the car distribution in synthetic images is similar with the distribution of car in real world. For the purpose of reducing the domain gap in appearance level, the parameters of camera model are same as the camera parameters of image collecting cars and the image is rendered by using the PBRT(Physically Based Ray Tracing)when we generated the synthetic images. Secondly, by training the neural network of instance segmentation with different datasets,the across validation result proves that the reality gap between synthetic and real images is no more than the domain gap between real images. Thirdly, the training results of datasets with different samples diversity show that the diversity of the samples yields better generalization between different datasets for car detection which can effectively reduce the domain gap.


关键词:Autonomous vehicle, Synthetic image, Domaingap, PBRT, Car detection

PanoCar试用(学校申请)

  • 姓名*

  • 手机号*

  • 微信号*

  • 邮箱

  • 所在学校*

  • 所在学院*

  • 导师姓名*

  • 导师电话

  • 导师邮箱

  • 试用PanoCar目的*

    • 产品选型
    • 项目招标
    • 毕业设计
    • 学术研究
    • 参加比赛
    • 学习了解
    • 其他
  • 您认为软件使用过程中哪些方面比较重要*

    • 技术支持
    • 产品功能
    • 性价比
    • 国产化替代
    • 需求定制能力
    • 仿真精度
    • 模型计算效率
    • 模型计算稳定性
    • 模型参数配置易用性
    • 模型参数库丰富程度
    • 其他
  • 您关注PanoCar哪些模块或功能*

    • 模块:车辆底盘模型
    • 模块:动力传动系统模型
    • 模块:空气动力学模型
    • 模块:转向系统模型
    • 模块:悬架系统模型
    • 模块:制动系统模型
    • 模块:轮胎模型
    • 模块:3D道路模型
    • 模块:驾驶员模型
    • 模块:驾驶操纵模型
    • 模块:I/O接口
    • 功能:Matlab/Simulink联合仿真
    • 功能:PanoCar实时平台应用
    • 功能:PanoCar本地仿真测试
    • 功能:数据后处理功能
    • 功能:动画引擎
  • 您是通过哪种途径了解到PanoCar的*

    • 官网
    • 微信公众号
    • 论文专著
    • 学术会议
    • 知乎B站等其他新媒体平台
    • 行业网站
    • 搜索引擎
    • 同行推荐
    • 他人介绍
    • 其他
  • 验证码

PanoCar试用(企业申请)

  • 姓名*

  • 手机号*

  • 所在单位*

  • 所在部门*

  • 微信号*

  • 邮箱

  • 您试用PanoCar软件的目的*

    • 产品选型
    • 项目招标
    • 学习了解
    • 其他
  • 您认为软件使用过程中哪些方面比较重要*

    • 技术支持
    • 产品功能
    • 性价比
    • 国产化替代
    • 需求定制能力
    • 仿真精度
    • 模型计算效率
    • 模型计算稳定性
    • 模型参数配置易用性
    • 模型参数库丰富程度
    • 其他
  • 您关注PanoCar哪些模块或功能*

    • 模块:车辆底盘模型
    • 模块:动力传动系统模型
    • 模块:空气动力学模型
    • 模块:转向系统模型
    • 模块:悬架系统模型
    • 模块:制动系统模型
    • 模块:轮胎模型
    • 模块:3D道路模型
    • 模块:驾驶员模型
    • 模块:驾驶操纵模型
    • 模块:I/O接口
    • 功能:Matlab/Simulink联合仿真
    • 功能:PanoCar实时平台应用
    • 功能:PanoCar本地仿真测试
    • 功能:数据后处理功能
    • 功能:动画引擎
  • 您是通过哪种途径了解到PanoCar的*

    • 官网
    • 微信公众号
    • 论文专著
    • 学术会议
    • 知乎B站等其他新媒体平台
    • 行业网站
    • 搜索引擎
    • 同行推荐
    • 他人介绍
    • 其他
  • 验证码